
On Weird Machines and Lazy Functional 
Programming

Cecil Accetti  -       Prof. Peilin Liu

Doctoral College Conference – University of Surrey
July 10, 2019



What is computer architecture?



Software engineers

Computer Architects

Electronic Engineers

Programmers
Users

What is computer architecture?

Physicists, Chemists
Materials Scientists



Life of a Computer Architecture PhD student 
(before 2018)

▪ Intel, AMD, ARM keep shipping a faster, newer, 
better, multicore processor every 6 months

▪ It seems they’ve got it all covered…
▪ Superscalar, speculative, hyperthreading, out-of-order, SIMD, 

SIMT, hypervisors, virtualization, neural processing units

▪ What could *I* do?
▪ No budget

▪ No contracts, NDAs



2018: Meltdown and Spectre

• Most CPUs are flawed!
• (Yay!)

• Vendors can’t* fix it!
• (Yay!)2

• It’s a conceptual problem,
not a mistake!

• (Yay!)3

* Don’t want or, don’t know how



Spectre – Fast or secure, not both

• Moore’s law(1965) gave us faster, 
smaller machines every 18 months.

• More transistors per area

• Complex microarchitectures
• Multilevel caches
• Superscalar, out-of-order 

execution
• Branch Prediction
• Speculative execution



Spectre – Fast or secure, not both

• Speculation: gambling with 
your program

• Speculation allows transient 
access to secret information

• Secret information becomes a 
hidden machine state

• Disable speculation?
...and we’re back to ~1998 
performance levels!



Other microarchitecture exploits

• Rowhammer (2014)
• Indirect modification of memory contents. 

• Flips bits (0 to 1, 1 to 0)

• Rambleed (2019)
• Leaks data, similar to rowhammer

• Foreshadow (2018)
• Bypass to Intel security instructions (SGX)

• Spoiler (2019)
• Speculation execution + Rowhammer

• And the list goes on…



https://xkcd.com/2166/

This is not new



This is not new

• A “cambrian explosion” in the 80s 
and 90s

• Worms
• Viruses
• Trojans
• Rootkits
• -> malware

• Coordinated attacks, by corporations and 
nation states

• Exploit market
• Brokers
• Buyers, sellers
• No questions asked

• Attacks on:
• Power grids, automotive systems, 

governmental communications...





What should we do?



Security x Computing Theory

• Is there a fundamental cause of vulnerabilities?

• How to derive security threats from computing theory 
concepts?

• How to design a more secure computer?

• Open problem: A handful of publications in this decade 
tried to formalize attacks and exploiting methods. 
(langsec.org, T.Dullien)



Foundations

• Computational Models 
• Finite State Machines  (time-dependent, stateful)
• Turing Machines  (time-dependent, stateful)
• Combinatory Logic ≡ λ-Calculus (time-independent, 
stateless)

• Von Neumann Architecture :
•  Stored program -> Universal Turing Machine



Imperative programming

• C/C++, Pascal, Java, Python, x86, ARM, MIPS, RISC-V... 

• Programmer describes an algorithm : a Turing machine that 
solves a problem, to be executed by the physical machine

• Program controls the behavior (state) of the machine:

• Read (write) data from (to) memory

• Set the order of operations
• Variable assignments, loops, procedures



Imperative programming

• C/C++, Pascal, Java, Python, x86, ARM, MIPS, RISC-V... 

• Programmer describes an algorithm : a Turing machine that 
solves a problem, to be executed by the physical machine

• Program controls the behavior (state) of the machine:

• Read (write) data from (to) memory

• Set the order of operations
• Variable assignments, loops, procedures

void mat_show(matrix a)
{
int i, j;
double *p = a->x;
for (i = 0; i < a->h; i++, putchar('\n'))
for (j = 0; j < a->w; j++)
printf("\t%7.3f", *p++);
putchar('\n');
} 

Read
Write
Control operations:

branches
jumps

http://www.opengroup.org/onlinepubs/009695399/functions/putchar.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/putchar.html


The Security Problem of Turing Machines

≡

Turing Machines with different set of states can be equivalent!

The theory gives no mechanism to verify the behavior of a TM, other
than observing its output.(Halting problem –Entscheidungsproblem)

→  You have an infinite set of programs with the same output



The Security Problem of Turing Machines

≡

Turing Machines with different set of states can be equivalent!

The theory gives no mechanism to verify the behavior of a TM, other
than observing its output.(Halting problem -Entscheidungsproblem)

→ You have an infinite set of programs with the same output



Foundations

• Computational Models 
• Finite State Machines  (time-dependent, stateful)
• Turing Machines  (time-dependent, stateful)
• Combinatory Logic ≡ λ-Calculus (time-independent, 
stateless)

• Von Neumann Architecture :
•  Stored program -> Universal Turing Machine



Foundations

• Computational Models 
• Finite State Machines  (time-dependent, stateful)
• Turing Machines  (time-dependent, stateful)
• Combinatory Logic ≡ λ-Calculus (time-independent, 
stateless)

• Von Neumann Architecture :
•  Stored program -> Universal Turing Machine

Source code
(Turing machine)



Foundations

• Computational Models 
• Finite State Machines  (time-dependent, stateful)
• Turing Machines  (time-dependent, stateful)
• Combinatory Logic ≡ λ-Calculus (time-independent, 
stateless)

• Von Neumann Architecture :
•  Stored program -> Universal Turing Machine

Source code
(Turing machine) Processor

(Turing machine)



Foundations

• Computational Models 
• Finite State Machines  (time-dependent, stateful)
• Turing Machines  (time-dependent, stateful)
• Combinatory Logic ≡ λ-Calculus (time-independent, 
stateless)

• Von Neumann Architecture :
•  Stored program -> Universal Turing Machine

Source code
(Turing machine) Processor

(Turing machine)

Hidden states compose: (source TM) • (processor TM)



Security x Computing Theory

• Security fundamentals:

• Confidentiality
• Keep secrets secret

• Availability
• Keep system running

• Integrity
• Keep data unchanged

• Too abstract
• Exploit practitioners have their own community

• Language, jargon, methods
• Forums, message boards, blogs
• Academy-averse



Weird Machines



Weird machines

• A set of states outside the original 
program, but enabled by it.



Weird machines

• A set of states outside the original 
program, but enabled by it.

• What you call a computer when it is not 
doing what you told it to do

• Vulnerabilities 
• Bugs (programming errors)
• Bad programming practices

• Lack of boundary checks on data
• Design flaws (Spectre)
• Technology flaws (bit flipping)



Weird machines

• A computer with 1GB RAM, 32x32bits registers
• 230 * 8 bits = 233 bits
• 32 * 32 bits = 1024 = 210 bits

• 233 * 210 = 243 storage cells
• 1 or 0 -> 2 * 243 = 244 possibilities

17,592,186,044,416 possible configurations



Sea of states



Undefined statesSane states (your program)
A

ll m
achine states

State transition



Case 1:
Bugs







Infiltration 



Return to original state



Case 2:
Crafted inputs

(and bad programming practices)







Infiltration 







Case 3:
Design flaws











Infiltrate – modify - read

• Attackers should be able to
• Read/write arbitrary memory locations

• Directly
• Indirectly (side-channels)

• Modify the execution order of a victim program

• Infiltrate without detection, through 
vulnerabilities  (side-effects)

• Can we compute without
• Read/write,
• Control operations,
• Side-effects?

        





Foundations

• Computational Models 
• Finite State Machines  (time-dependent, stateful)
• Turing Machines  (time-dependent, stateful)
• Combinatory Logic ≡ λ-Calculus (time-independent, 
stateless)

•  Functional programming
• Immutable data
• Pure (as in maths) functions
• Restricted side-effects
• Referential transparency
• Mathematical reasoning

• Function composition: f(g(x))
• List operations – no overflow issues



Functional Programming Architectures

• Not a new idea
• (1979) Turing Award – John Backus: Can programming be 

liberated from the von Neumann style?
• (1979) University of Kent – David Turner: Miranda
• (80s) Symbolics’ LISP machines
• (1984) Cambridge University – W. Stoye : SKIM I and II
• (1985) Burroughs’ NORMA
• (1988) University College London – S.Peyton Jones: GRIP
• ...



Functional Programming Architectures

• Not a new idea
• (1979) Turing Award – John Backus: Can programming be 

liberated from the von Neumann style?
• (1979) University of Kent – David Turner: Miranda
• (80s) Symbolics’ LISP machines
• (1984) Cambridge University – W. Stoye : SKIM I and II
• (1985) Burroughs’ NORMA
• (1988) University College London – S.Peyton Jones: GRIP
• ...

• The rise of PCs shifts research to compiling functional 
languages

• (1988) Haskell
• (1998) Haskell - (standard), Glasgow Haskell Compiler
• ...
• (2009) University of York : Reduceron
• ...



Our approach - fun

• Graph reduction of combinator graphs



Lazy Functional Programming

• Lazy evaluation
• Only useful computations are performed – no side-effects
• State transitions only occur if they contribute to 

computing the result wanted by the user/programmer.

• Referential transparency
• G(x) = x + x
• F(y) = 3y 
• F(G(2)) = F(4) = 12

• M(z) =  (Do something evil) and return z

• F(M(G(2))) = ?
• M(4) = ? F(M(4)) = ?



Return to original state



Weird Machines in FP

• No variable assignments
• Can’t read data directly

• Immutable data
• Can’t modify data 

• No control instructions
• Jumps, branches
• Can’t modify execution flow

• Pure functions
• No side-effects

• Lazy evaluation
• Malware is not useful!



Project Status

• FPGA prototyping stage
• Stable compiler for Wu

• Operational system kernel - funk
• Under development

• Device drivers
• Ethernet
• TCP/IP stack

• Benchmarking
• Evaluating Performance

• Hacking
• Trying to break
• Searching for a weird machine that

violates confidentiality, integrity
or availability.




